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New strategies for identifying chemical carcinogens and assess-
ing risk have been proposed based on the Tg.AC (zetaglobin
promoted v-Ha-ras) transgenic mouse. Preliminary studies suggest
that the Tg.AC mouse bioassay may be an effective means of
quickly evaluating the carcinogenic potential of a test agent. The
skin of the Tg.AC mouse is genetically initiated, and the induction
of epidermal papillomas in response to dermal or oral exposure to
a chemical agent acts as a reporter phenotype of the activity of the
test chemical. In Tg.AC mouse bioassays, the test agent is typically
applied topically for up to 26 weeks, and the number of papillomas
in the treated area is counted weekly. Statistical analyses are
complicated by within-animal and serial dependency in the pap-
illoma counts, survival differences between animals, and missing
data. In this paper, we describe a statistical model for the analysis
of skin tumor data from a Tg.AC mouse bioassay. The model
separates effects on papilloma latency and multiplicity and ac-
commodates important features of the data, including variability
in expression of the transgene and dependency in the tumor
counts. Methods are described for carcinogenicity testing and risk
assessment. We illustrate our approach using data from a study of
the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure
on tumorigenesis.
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Genetically altered mice are widely used in studying mech-
anisms of carcinogenesis, and in recent years transgenic mouse
models have been developed that can potentially discriminate
between carcinogens and noncarcinogens (Eastin, 1998; Spal-
dinget al.,1999; Tennantet al.,1998; Yamamotoet al.,1998).
The Center for Drug Evaluation and Research of the FDA has
recently approved the use of transgenic animal models in
screening for drug-induced carcinogenicity, and transgenic an-
imals have become widely used in drug evaluation. There is a
great deal of interest in developing methods for rapid carcin-
ogen identification, since thousands of new drugs and chemi-

cals are developed each year that potentially modify the risk of
cancer in humans. Conventional 2-year rodent bioassays are
expensive and time consuming to conduct. Test systems that
utilize animals susceptible to carcinogens do not require as
many animals and can evaluate chemicals within shorter peri-
ods. Also, genetically altered mice that incorporate human
protooncogenes may be better animal surrogates for human
cancer than the wild-type rodents used in conventional studies
(Contrera and DeGeorge, 1998). Transgenic mice have been
developed that employras oncogenes that are known to func-
tion in both human and animal cancers (Lederet al., 1990;
Yamamotoet al., 1996).

Preliminary studies suggest that the Tg.AC mouse, which
carries an activated v-Ha-ras oncogene, may be a good model
for rapid carcinogen identification (Spaldinget al.,1999; Ten-
nant et al., 1995, 1996). The Tg.AC mouse has genetically
initiated skin, and the epidermal cells serve as targets for
tumorigenesis. Although the incidence of spontaneous papillo-
mas is very low, both genotoxic and non-genotoxic carcino-
gens can cause prompt epithelial proliferation and papilloma
formation (Spaldinget al., 1993). Thus, unlike the conven-
tional bioassay, in which the majority of tumors are occult and
are not detectable until necropsy, the primary observation in
Tg.AC mouse bioassays consists of weekly counts of the
number of detectable skin papillomas.

The current standard for statistical analysis of skin papilloma
data from Tg.AC mouse bioassays separately tests for differ-
ences between each experimental group and the control group
with respect to: (1) percent animals with tumors; (2) average
latency time to appearance of the first skin tumor; (3) average
number of tumors per animal at risk; (4) average number of
tumors per tumor-bearing animal; and (5) average latency to
development of maximal number of tumors observed (Tennant
et al., 1998).

There are several limitations to this approach. First, the five
measures are closely related and it is unlikely that a chemical
has one effect and not others. Repeated testing drives the
experiment-wise false positive rate above 0.05, and it is nec-
essary to correct for multiple comparisons. A more powerful
approach would compare groups with respect to fewer mea-
sures (perhaps just tumor latency and multiplicity). Second,
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animals that die early are not as likely to develop papillomas or
to achieve a maximum. Thus, tests based on the above mea-
sures can be extremely sensitive to group-specific differences
in animal survival. Third, there is often interest not only in
testing for differences between groups but also in characteriz-
ing the response at different exposure levels. Current methods
for dose-response estimation in carcinogenicity bioassays are
based on the proportion of animals with one or more tumors,
and do not account for the actual number of tumors. Clearly,
new methods are needed to better characterize exposure effects
in Tg.AC bioassays.

Kokoskaet al. (1993) proposed an approach for the statis-
tical analysis of tumor multiplicity data from initiation/promo-
tion experiments. Under their approach, the number of induced
tumors and the individual tumor appearance times are assigned
parametric distributions, and inference is based on the mean
number of tumors per group and the mean time to tumor
appearance. The Kokoskaet al. model requires data on the
individual tumor onset times. To obtain such data, the papil-
lomas need to be individually monitored to determine for each
study week the number of papillomas that appear for the first
time in that week. Even when substantial time and effort is
invested in monitoring the individual tumors, the onset times
are subject to substantial measurement error, particularly when
the tumor burden is moderate to large. For this reason, indi-
vidual tumor data are typically not collected in Tg.AC bioas-
says. An additional drawback of the Kokoskaet al. model is
that it does not account for dependency between the appear-
ance times for multiple tumors on the same animal, or for
variability between animals in the propensity to develop tu-
mors. In Tg.AC bioassays, the appearance times for multiple
papillomas on the same mouse tend to be highly correlated and
the papilloma response can vary substantially between mice,
possibly due to heterogeneity in expression of the transgene.

In previous work, we developed flexible statistical models
for skin papilloma data (Dunson, 2000; Dunson and Haseman,
1999). These models characterize the change in the papilloma
burden at each observation time using underlying variables that
relate to different features of the tumor response, including
latency, susceptibility, multiplicity, and regression. Such an
approach is extremely useful in characterizing differences in
mechanistic studies and, unlike the Kokoskaet al. approach,
the models account for both dependency in the tumor appear-
ance times and variability between animals. However, due to
the complexity of the models, special software is needed to
implement the analysis and it can be difficult to reliably esti-
mate all the parameters when the papilloma incidence is low.

Statistical methods have also been proposed based on a two
stage clonal expansion model of carcinogenesis, in which
initiated cells multiply and regress via a stochastic birth and
death process (Dewanjiet al.,1999). Such models are appeal-
ing, but have had limited application in testing for carcinogenic
effects, due to the complexity of the likelihood. To simplify
estimation and to accommodate variation in the response

among individual animals, generalized estimating equations
can potentially be used for model fitting (see, for example,
Burnettet al.,1995). However, this approach relies heavily on
large sample approximations that may not be appropriate in
Tg.AC studies, which typically have a low spontaneous tumor
incidence and a small to moderate sample size.

In this paper, we describe an alternative approach for the
statistical analysis of skin papilloma data from a Tg.AC bio-
assay. We characterize the effect of exposure on the papilloma
response using a mixed-effects Poisson transition model. Our
model is a type of generalized linear mixed model (GLMM),
and the reader is referred to Zeger and Karim (1991) and
Breslow and Clayton (1993) for technical details related to
GLMMs. In recent years, GLMMs have become widely used
for analyzing correlated and overdispersed data (see, for ex-
ample, Funget al.,1998; Piepho, 1999). Under our model, the
increase in the papilloma burden from one week to the next has
a Poisson sampling distribution. During a latency period prior
to the appearance of any papillomas, the Poisson mean is
assumed to depend on a mouse-specific susceptibility variable,
on duration of exposure, and on dose through a log-linear
model. After appearance of the first skin tumor, there is a shift
in the Poisson mean, and the subsequent rate of increase in the
papilloma burden is assumed to depend on dose through a
second log-linear model. The proposed statistical model can be
used for testing of exposure effects on papilloma incidence,
latency and multiplicity, or for dose-response estimation. Anal-
yses can be implemented easily within standard statistical
packages, such as SAS. We illustrate the methods through
application to a National Toxicology Program (NTP) study of
TCDD (van Birgelenet al., 1999).

MATERIALS AND METHODS

Modeling skin tumor counts. In a Tg.AC mouse bioassay, each animal is
randomly assigned to a dose group and is exposed throughout the 26 week
duration of the study. Skin papillomas on the back of each animal are counted
once per week for 26 weeks or until the animal dies. Natural deaths tend to be
rare due to the short duration of the study. However, there may be treatment-
induced mortality in the higher dose groups for some test chemicals. Animals
that appear to be suffering, either due to toxicity or to a high tumor burden, are
sometimes sacrificed for humane reasons prior to completing the study.

Let Zij be the number of detectable papillomas on the back of mousei at
week j . On a given animal, the change in the tumor burden from one week to
the next equals the number of new papillomas that appear minus the number
of old papillomas that regress. Thus, if papillomas are not individually tracked,
we cannot determine with certainty the number of new skin tumors that appear
in a given week. Data typically consist of weekly counts of the number of
detectable tumors for each mouse, since tracking of individual tumors can be
difficult when the papilloma burden is high. Therefore, we assume that the
individual tumor onset times are unknown, and we model the rate of increase
in the papilloma burden.

Let Mij 5 max{Zi1, . . . , Zi , j21} be the maximum papilloma burden ob-
served for mousei prior to weekj , and letYij 5 Mi , j11 2 Mij be the increase
in the maximum papilloma burden for mousei between weekj 2 1 and week
j . We assume that the random variableYij has a Poisson sampling distribution
with the following mean:
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m ij 5 E~Yij uMij , bi, t j, di!

5 Sexp$b1 1 ~bi 1 g1!t jdi% if Mij 5 0,
exp~b2 1 g2di! if Mij . 0, (1)

wherebi is a mouse-specific susceptibility variable,t j 5 j /T, T is the duration
of the study,di is the dose level for mousei on the log scale,b1, b2 are
intercept parameters related to the rate of appearance of spontaneous papillo-
mas, andg1, g2 are slope parameters associated with exposure. The mouse-
specific variablebi is assumed to have a normal sampling distribution with
mean zero and variances2.

The first expression in Model 1 relates to tumor onset, and involves three
parameters:b1, g1, ands2. In a control animal having no tumors, exp(b1) can
be regarded as the rate of appearance of the first papilloma. In a given week,
the probability that a control animal having no tumors develops it’s first
papilloma is 12 exp{2exp(b1)}. Typically b1 ! 0, since the spontaneous
tumor incidence is low during a 26 week study. The probability of detecting the
first skin tumor increases with increased time of exposure and dose of a
carcinogen. The expression (bi 1 g 1)t jdi models this process. For example, if
g1 5 0, then the dose of the chemical does not affect the probability of an
animal developing its initial papilloma during the study. Alternatively, a large
value forg1 implies that the exposed mice develop papillomas more rapidly, or
equivalently, a higher proportion of exposed mice develop papillomas during
the study. The mouse-specific variablebi accounts for possible heterogeneity
in response among mice. For example,s2 5 0 would imply that all animals
have the same underlying probability of developing papillomas during the
course of the study given equivalent survival. Alternatively,s2 . 0 implies
that mice have different susceptibilities to the development of papillomas.
Highly susceptible mice will tend to develop more papillomas and develop
them earlier than less susceptible mice.

The second expression in Model 1 relates to tumor multiplicity, and involves
two parameters:b2 and g2. Once a tumor has appeared, the development of
additional tumors in a given animal may proceed at a different rate than the
development of the initial tumor. The term exp(b2) can be regarded as the
spontaneous rate of development of additional papillomas in a control mouse
that already has at least one papilloma. The parameterb2 may or may not equal
b1. The parameterg2 represents the effect of dose on papilloma multiplicity.
For example, ifg2 5 0, then the dose of the test chemical does not affect the
probability of developing additional papillomas during the study, once an
initial tumor has occurred.

Model 1 follows a simple form that tends to provide a good fit to papilloma
data from the few Tg.AC bioassays that we have examined to this point. As
more data become available, it may be necessary to refine the model or to
include additional parameters to more accurately represent the underlying
process that generated the data. For example, the rate of development of
papillomas may depend on the body weight of the mouse, on the current tumor
burden, or on the age of the mouse. Several studies have demonstrated a
positive correlation between body weight and tumor incidence for some tissue
sites (Hasemanet al.,1997; Turturroet al.,1993), and in some cases it may be
necessary to adjust for body weight within Model 1 to avoid biases caused by
weight differences across dose groups. Also, as the papilloma burden in-
creases, the rate of developing new tumors may be slowed (and existing tumors
may fuse) due to limited space on the animal and/or the inability to provide
sufficient nutrients for new tumors to grow and develop. To account for such
an effect, we could incorporate ab 3Mij term in the second expression of Model
1. However, in our experience, this term does not appreciably improve the fit
of the model unless the papilloma burden is extremely high. Including ab4 age
term to account for an increase in the incidence of spontaneous tumors with
age also tends to have little effect on model fit.

Dose-response modeling.In carcinogenicity bioassays, there is interest
not only in identifying carcinogens, but also in characterizing the magnitude of
the tumor response as a function of dose. Estimates of dose-response are useful
in comparing compounds, in quantifying risk, and in setting guidelines for

acceptable levels of human exposure. In conventional studies, where tumor
multiplicity is rare at most sites, estimates of dose-response are typically based
on the proportion of animals with tumors.

In Tg.AC bioassays, the cumulative proportion of mice with detectable
papillomas can be estimated for each study week. Under Model 1, the prob-
ability that a mouse develops papillomas by weekj of the study varies with
dose and between animals according to the model:

Pij 5 1 2 P
k51

j

Pr~Yik 5 0uMik 5 0, bi, tk di!

5 1 2 exp@2O
k51

j

exp$b1 1 ~bi 1 g1!tkdi%#. (2)

Suppose thatTi is the number of observations for mousei prior to death. The
probability that mousei develops papillomas during the study isPiTi . Mice
dying prior to terminal sacrifice will have less opportunity to develop papil-
lomas than mice that survive the duration of the study. Model 2 accounts for
variability between mice in survival and in sensitivity to exposure. The
expected proportion of animals with papillomas can be estimated for any given
study week by integrating the mouse-specific probability,Pij , across the
distribution of the susceptibility variablebi . This can be done easily using
numerical integration (Shampineet al., 1997), and an S-PLUS program is
available at our website (dir.niehs.nih.gov/dirlecm/transgen/tgac.html).

Since Tg.AC mice commonly develop multiple papillomas in response to
exposure to a chemical carcinogen, it may be of interest to estimate the effect
of dose not only on the proportion of mice with papillomas but also on the
mean papilloma burden. Under model (1), the expected maximum papilloma
burden achieved for mousei by weekj is:

E$O
k51

j

Yik% 5 O
k51

j

$E~YikuMik 5 0, bi, tk, di!~1 2 Pi ,k21!

1 E~YikuMik . 0, bi, tk, di! Pi ,k21%.

An average across animals can be calculated for any given study week by
integrating the mouse-specific papilloma burden across the distribution of the
susceptibility variablebi . An S-PLUS program to implement this calculation is
available at our website.

Fitting the model. Model 1 is in the form of a Markov generalized linear
mixed model, and the SAS procedure NLMIXED can be used to obtain
approximate maximum likelihood estimates of the parameters. The NLMIXED
procedure uses adaptive Gaussian quadrature, which has been found to be one
of the most reliable methods of estimation for nonlinear mixed effects models
(Pinheiro and Bates, 1995). An example SAS program that uses the NL-
MIXED procedure to analyze Tg.AC mouse papilloma data can be found at our
website (dir.niehs.nih.gov/dirlecm/transgen/tgac.html). Alternatively, Model 1
can be fit using the SAS macro GLIMMIX (Wolfinger, 1993), which uses
penalized quasilikelihood for parameter estimation (Breslow and Clayton,
1993).

Another possibility is to follow a Bayesian approach to inference (Carlin and
Louis, 1996; Gelmanet al.,1996). In Bayesian models, prior uncertainty in the
parameters is quantified through the use of prior probability distributions.
Inference is based on the posterior distribution of the parameters conditional on
the prior and on the data from the current study. In recent years, Bayesian
approaches have become widely used (Malakoff, 1999), due in part to the
ability to incorporate prior information from previous studies (see, for exam-
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ple, Dempsteret al.,1983; Dunson and Dinse, 2000; Ibrahimet al.,1998). The
Gibbs sampler (Gelfand and Smith, 1990) can be used to fit Model 1 within
BUGS, a freely available software package for Bayesian inference Using
Gibbs Sampling (Bestet al., 1996, www.mrc-bru.cam.ac.uk/bugs). An exam-
ple program is available at our website, and methods for choosing prior
distributions based on historical control data are described in Appendix A.

Although the BUGS software is not as widely used or as familiar as SAS,
the Bayesian approach has several advantages over maximum likelihood
estimation in this setting. First, Bayesian point and interval estimates are
appropriate regardless of the sample size, while maximum likelihood estimates
rely on large sample approximations. Second, information from previous
studies can be included in a Bayesian analysis through the prior distributions,
as we illustrate in Appendix A. When the tumor incidence is low, as is the case
in Tg.AC mouse bioassays, information from historical studies can improve
the sensitivity of statistical tests (Haseman, Huff, and Boorman, 1984). Also,
it may be difficult to obtain maximum likelihood estimates when few animals
get any tumors in a study. Bayesian analyses that incorporate prior information
are not subject to this estimability problem. Third, it is trivial to fit an extended
version of Model 1 in BUGS that accommodates extra-variability relative to
the Poisson distribution. Such variability may occur in Tg.AC studies, but can
be difficult to account for within current software for maximum likelihood
estimation. The Bayesian approach has been used previously to analyze data
from conventional tumorigenicity studies (Dunson and Dinse, 2000).

Statistical tests. Using Model 1, the response to a given chemical can be
assessed based on papilloma incidence, latency, and multiplicity. If there is no
effect of exposure on the incidence of papillomas theng1 5 g2 5 0; that is,
dose has no effect on the rate of appearance of new papillomas prior to or after
the appearance of the first papilloma. If there is no effect of exposure on the
latency time from the start of the study to the appearance of the first papilloma,
then g1 5 0. If there is no effect of exposure on papilloma multiplicity,
adjusting for animal-to-animal differences in the latency time, theng2 5 0.
Thus, the null hypotheses corresponding to incidence, latency, and multiplicity
are

H01: g1 5 g2 5 0, H02: g1 5 0, andH03: g2 5 0,

respectively.
Within the maximum likelihood approach, we first testH 01 to assess an

overall dose-response trend in papilloma incidence. This can be done by
rejecting H 01 if 2{ L 2 L(H 01)} $ x 2

2(0.05) 5 6, where L is the log
likelihood under Model 1 andL(H 01) is the log likelihood under Model 1 with
g1 5 g2 5 0. If we fail to rejectH 01 we conclude there is no evidence of a
dose-response trend in papilloma incidence. However, if we rejectH 01, then
we would like to know whether the trend is due to a shortening of the latency
time and/or to an increase in papilloma multiplicity. Ifz1 5 ĝ 1/se(ĝ1) . 1.64,
we rejectH 02 and conclude that there is a significant decrease in papilloma
latency with increasing dose. Ifz2 5 ĝ 2/se(ĝ2) . 1.64, we rejectH 03 and
conclude that there is a significant increase in papilloma multiplicity with
increasing dose. All of the information required to conduct these tests is given
in the SAS output.

Within the Bayesian approach, samples will be available from the joint
distribution of the parameters conditional on the papilloma data from the
current study and on the prior, which can potentially be chosen based on
historical control data as described in Appendix A. We conclude that there is
evidence of an increasing dose-response trend in incidence if

Pr̂ $g1/sê~g1! 1 g2/sê~g2! . 0% $ 0.95,

where this test statistic can be estimated based on a large number of Monte
Carlo samples ofg1 and g2. Increasing dose-response trends in latency and
multiplicity can be assessed by examining 95% intervals forg1 and g2,

respectively. Strictly positive intervals are suggestive of increasing dose-
response trends.

Large papilloma responses.Quantification of the papilloma response can
be difficult for animals with a high tumor burden. As the number of papillomas
on an animal becomes large, it becomes difficult to accurately distinguish
individual tumors and papillomas frequently coalesce and continue to grow as
a single mass. In such cases, the papilloma count is clearly not the best way to
quantify the response. A better measure of effect may be the volume occupied
by the skin tumors. However, this volume can be extremely difficult to
estimate accurately for live animals.

Since the spontaneous papilloma incidence is low in Tg.AC mice, a high
tumor burden typically occurs only with exposure to a clear chemical carcin-
ogen, such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or benzene. We
recommend discontinuing weekly clinical observations of the papilloma bur-
den on a mouse once the count for that mouse exceeds a threshold of 20
tumors. In our experience, papillomas can be counted with reasonable accuracy
and papillomas rarely coalesce when the tumor burden is below this threshold.
Mice dying or exceeding the threshold prior to the last observation time will
contribute fewer observations to the analysis than mice that complete the study
with a small to moderate papilloma burden. Due to the likelihood-based
structure of Model 1, the missing observations are ignorable and can be
excluded from consideration in the analysis (Laird, 1988).

Example: TCDD Study

Data from a National Toxicology Program study of the effect of TCDD
exposure on papilloma development are used to illustrate the proposed statis-
tical methodology (van Birgelenet al.,1999). In this study, female hemizygous
Tg.AC mice were housed individually and were randomly assigned to treat-
ment groups. Groups of 20 mice received 0, 5, 17, 36, 76, 121, 166, 355, or 760
ng/kg of TCDD topically in acetone three times a week for 26 weeks. On a
weekly basis, the number of skin papillomas were recorded for each animal.
No TCDD-induced alterations in body weight gain or mortality were observed.
However, 38 of the 180 mice died prior to completing the study. This survival
rate is similar to the 85% average survival rate that has been reported for
vehicle control Tg.AC mice in 26 week studies (Eastinet al., 1998). Early
death could not be attributed to any one cause, including the occurrence of
odontogenic tumors, which have been observed to cause early mortality in
Tg.AC mice. The large number of dose groups in this study facilitates evalu-
ation of the statistical model.

A Kaplan and Meier (1958) estimate of the cumulative proportion of mice
with papillomas is plotted in Figure 1 for each study week and dose group.
Animals dying prior to terminal sacrifice are not fully at risk of developing skin
tumors, and the Kaplan-Meier approach adjusts the proportions for animal
survival. Figure 1 shows a clear dose-dependent decrease in papilloma latency.
The survival-adjusted average maximum papilloma burden is plotted in Figure
2 for each dose group and study week. Animals that die early have less
opportunity to develop papillomas. To account for animal survival, we esti-
mated the average increase in the maximum papilloma burden at each week
among surviving animals, and we summed these averages to estimate the
average maximum papilloma burden at each week. Figure 2 shows a dose-
dependent increase in the maximum papilloma burden.

We first fit Model 1 to the TCDD data using NLMIXED in SAS. The
approximate maximum likelihood estimates of the parameters are shown in
Table 1, along with standard errors and confidence intervals. The SAS program
that was used to obtain these estimates is available at our web site (dir.niehs.
nih.gov/dirlecm/transgen/tgac.html), and researchers can easily modify this
program to analyze their own data sets.

The estimated probability that a vehicle control animal gets one or more
papillomas during the course of the study is very small (12 exp{226
exp(b̂ 1)} 5 2.3e 2 7), which is not surprising since no papillomas were
detected in the vehicle control group. The estimated spontaneous rate of
developing additional papillomas in a control mouse that already has at least
one papilloma is also small (exp(b̂2) 5 0.029) as is the expected maximum
papilloma burden in a control mouse surviving the duration of the study:
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O
k51

26

~exp~b̂1!exp$~1 2 k!exp~b̂1!% 1 exp~b̂2!@1

2 exp$~1 2 k!exp~b̂1!%#! 5 3.1e 2 7.

Estimation of these values relies on extrapolation downwards from the values
in the dosed groups. Historical control data could potentially be included, as
described in Appendix A, to improve the reliability of these estimates.

It also appears that there is a strong dose-response trend in papilloma
incidence, latency, and multiplicity. The p-value from a likelihood ratio test for
a trend in incidence isP , 0.001, andmaximum likelihood based tests for
trends in latency and multiplicity are also highly significant (P , 0.001). The
estimated probability of getting at least one papilloma during 26 weeks of
treatment with 5 ng/kg of TCDD for an animal with average susceptibility to
TCDD (bi 5 0) is

1 2 exp$2O
k51

26

exp~b̂1 1 ĝ1tk!% 5 0.0006.

This probability increases to close to one for animals with average suscepti-
bility that are treated with at least 36 ng/kg of TCDD. Less susceptible animals
(bi , 0) will have a lower risk of developing papillomas. For example, an
animal with susceptibility in the 10th percentile (bi 5 212.06),based on the
estimated level of animal-to-animal variability (ŝ2 5 88.62), has only a 0.017
probability of developing papillomas in the 36 ng/kg group. Thus, it appears
that there is high animal-to-animal variability in sensitivity to TCDD, though
an animal would have to be in the lower 2.7th percentile in susceptibility to
have lower than a 95% risk of developing papillomas with 26 weeks of
exposure to 760 ng/kg of TCDD.

We also fit Model 1 using a Bayesian approach implemented with the BUGS

software. We specified non-informative priors for the parameters, in order for
the results to be comparable to the results from NLMIXED. However, an
informative prior could be chosen as described in Appendix A based on the
spontaneous papilloma response observed in previous studies of individually
housed Tg.AC mice (e.g., Mahleret al., 1998). Data from studies with group
housed animals should not be used to choose the prior, since wounds caused
by fighting between cage mates can cause papilloma development in Tg.AC
mice (Tennantet al., 1998). The posterior means, standard errors, and confi-
dence limits from the Bayesian analysis are shown in Table 2, and the BUGS
program that was used to obtain these estimates is available at our web site.
The posterior means from the Bayesian analysis are very similar to the
approximate maximum likelihood estimates from NLMIXED.

Since TCDD clearly affects papilloma incidence, latency and multiplicity,
the primary objective of analyzing this particular dataset is to assess the fit of
the proposed model to the data. Based on Model 1, we estimated the expected
proportion of animals with papillomas for each dose group and study week by
plugging the parameter estimates from Table 2 into Model 2, and integrating
across the distribution of the mouse-specific susceptibility variablebi , using
the S-PLUS program available at our website. The resulting estimates are
plotted in Figure 3. The model-based estimates in Figure 3 approximate the
Kaplan-Meier estimates in Figure 1 for each study week. Based on Model 1,
we also estimated the expected maximum papilloma burden for each dose
group and study week. The resulting estimates are plotted in Figure 4. The
model-based estimates in Figure 4 approximate the empirical estimates in
Figure 2 for each study week.

DISCUSSION

Due to recent advances in molecular biology and pharma-
cology, the rate of development of new drugs has increased
substantially. Conventional rodent studies for evaluating drug
safety are expensive and timing consuming, and are limited in

FIG. 1. The cumulative propor-
tion of Tg.AC mice with a detectable
papilloma during the course of the
study after dermal exposure to
TCDD. A Kaplan-Meier approach is
used to adjust estimates for animals
dying early prior to developing any
skin tumors.
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their relevance to human populations. Fortunately, biological
advances have also led to the development of transgenic ani-
mals that have been shown to result in a carcinogenic response.
These animal models have been approved by the U.S. FDA for
use in evaluating drug safety. Transgenic mouse bioassays may
soon be widely used for rapid carcinogen identification and risk
assessment. In order for the results from these studies to be
properly interpreted, there is a critical need for the develop-
ment of new statistical methods.

We have proposed a new approach for the analysis of skin
papilloma data from Tg.AC studies. A Poisson mixture model
is used to describe the effect of exposure on the rate of increase
in the maximum papilloma burden. The model accommodates
distinct effects on papilloma latency and multiplicity, as well
as variability between mice in sensitivity to exposure. Due to

the structure of the model, it is straightforward to incorporate
additional factors to account for body weight, age of the
mouse, and overdispersion relative to the Poisson distribution.

Our goal was to develop a method for routine analysis of
skin papilloma data from Tg.AC studies. Since the incidence of
spontaneous papillomas is very low, a compound that has a
weak carcinogenic effect may induce only a few papillomas in
a Tg.AC bioassay. Therefore, we have used a simple statistical
model that can be fit even if no papillomas are detected for the
control animals and only a few are detected for the exposed
animals. The model provided an excellent fit to data from a
Tg.AC study of TCDD, based on examination of plots of the
observed and predicted proportion of mice with papillomas and
the average maximum papilloma burden at each study week.
We used the predictive log-likelihood approach of Dempster
(1974), as described in Karim and Zeger (1992), to further

TABLE 1
Results of Modeling Increases in Papilloma Response

Using NLMIXED

Parameter MLE Standard error
95% Confidence

interval

b1 218.56 1.98 (222.47,214.66)
b2 23.534 0.328 (24.180,22.888)
g1 37.08 4.35 (28.50, 45.65)
g2 3.379 0.367 (2.656, 4.103)
s2 88.62 26.90 (35.53, 141.7)

Note.Data from NTP study of TCDD (van Birgelenet al., 1999).

TABLE 2
Results of Modeling Increases in Papilloma Response

Using BUGS

Parameter Posterior mean Standard error 95% Credible interval

b1 218.50 1.98 (223.40,215.49)
b2 23.578 0.325 (24.225,22.965)
g1 36.85 4.27 (30.49, 47.16)
g2 3.437 0.364 (2.750, 4.160)
1/s2 0.012 0.003 (0.006, 0.019)

Note.Data from NTP study of TCDD (van Birgelenet al., 1999).

FIG. 2. The average maximum
papilloma burden per mouse during
the course of the study after dermal
exposure to TCDD. Estimates are ad-
justed for animal survival.
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verify the adequacy of the model. We recommend routinely
checking model fit based on plots of the observed and predicted
values, and an S-PLUS program for calculating the fitted
values is available at our website. There is need for further
evaluation of model fit based on data from multiple studies
involving smaller sample sizes and a variety of test agents. The
TCDD study utilized a relatively high number of dose groups
and animals, which made it a good study for model evaluation.
In future work we plan to evaluate the operating characteristics
of the proposed test procedures for designs that use fewer dose
groups and animals per group.

Although we have focused on Tg.AC studies, the statistical
methods are applicable to other model systems where tumors
are detectable in live animals. These include most animal
models of skin and breast cancer (e.g.Boormanet al., 1999).
Such models are widely used for assessing the tumorigenic
potential of test compounds, for exploring mechanisms of
tumor induction, and for identifying agents with chemopreven-
tive attributes.

APPENDIX A

Choosing the Prior Parameters for the Bayesian Analysis

To fit Model 1 using a Bayesian approach, it is necessary to
specify prior distributions for each of the model parameters.
Following the standard approach (see, for example, Gilkset al.,
1993), we assign a gamma (a01, a02) prior for 1/s2, where
a01/a02 is the prior mean anda01/a02

2 is the prior variance. In

addition, we choose normal priors for the parametersb1, b2,
g1, andg2:

b1 , N~m01, v01!, b2 , N~m02, v02!, g1 , N~m03, v03!,

g2 , N~m04, v04!, (1)

where m01, m02, m03, m04 are prior means representing the
investigators best “guess” at the parameter values based on all
information that is available prior to running the current study,
and v01, v02, v03, v04 are prior variances which are chosen to
reflect the uncertainty in this choice. To choose a noninforma-
tive prior, seta01 5 0.001,a02 5 0.001,m01 5 m02 5 m03 5
m04 5 0 and v01 5 v02 5 v03 5 v04 5 1000. A Bayesian
analysis that uses non-informative priors often gives similar
results to a maximum likelihood analysis.

While there is typically limited prior information aboutg1

andg2, the parameters representing the effect of dose on tumor
latency and multiplicity, respectively, historical control data
are informative aboutb1 andb2, the parameters related to the
spontaneous tumor incidence rate prior to and after the appear-
ance of the first papilloma. If weekly papilloma counts are
available for historical control animals, the prior meansm01

and m02 can be set equal to the estimates forb1 and b2,
respectively, from an analysis of the historical control data.
Similarly, the prior variancev01 andv02 can be set equal to the
estimated variance from such an analysis. This approach is
referred to as coherent Bayesian updating, and is a standard

FIG. 3. The estimated propor-
tion of Tg.AC mice with a detectable
papilloma during the course of the
study after dermal exposure to
TCDD. This estimate is based on the
fitted parameters shown in Table 2,
and is for mice surviving the duration
of the experiment.
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method in Bayesian analysis (see, for example, Gelmanet al.,
1996).

If weekly papilloma counts are not available for the histor-
ical studies, we can choosem01, m02, v 01, v 02 based on
summary statistics. In this case, we let

m01 5 log$2log~1 2 P̂0!/T%, (2)

where P̂0 5 (X0 1 0.5)/(N0 1 0.5), X0 is the number of
vehicle control animals with papillomas in previous studies,N0

is the total number of vehicle control animals in the historical
database, andT is the study duration (T 5 26 for 26 week
studies). We include 0.5 as a correction factor for low inci-
dence. Under the assumption thatb1 is constant from study to
study, we can choose the prior variance by letting

v01 5
P̂0~1 2 P̂0!

N0m01
2 T4exp~2m01!

, (3)

where this expression is derived using the delta method (Mor-
gan, 1992). To allow for a reasonable degree of study-to-study
variability, one can multiplyv01 by a factor of 10. We choose
m02 by solving the following equation:

M̂0 5 O
k51

T

$exp~m01!Sk21 1 exp~m02!~1 2 Sk21!%, (4)

whereM̂ 0 5 (Z0 1 0.5)/(N0 1 0.5), Z0 is the total number
of papillomas in the vehicle control mice in the historical
studies, andSk21 5 exp{2¥ h51

k21 exp(m01)}. Under the as-
sumption thatb2 is constant from study to study, we can
choose the prior variance by letting

v02 5 exp~2m02!$O
k51

T

~1 2 Sk21!%
2V̂0, (5)

where V̂0 is the estimated between animal variability in the
maximum papilloma burden for vehicle control animals in the
historical studies. To allow for a reasonable degree of study-
to-study variability, one can multiplyv02 by a factor of 10.

APPENDIX B

Choosing Initial Values for the Maximum Likelihood
Analysis

To fit Model 1 using either the Bayesian or the maximum
likelihood approach, it is necessary to choose initial values for
the parameters. While the Bayesian approach is not sensitive to
the initial values, current maximum likelihood programs may
fail to converge if the initial values are unreasonable. To
choose initial values forb1, b2, g1, andg2, we can modify the
procedure described in Appendix A for choosing the prior
parametersm01 andm02:

FIG. 4. The estimated maximum
papilloma burden per mouse during
the course of the study after dermal
exposure to TCDD. These estimates
are based on the fitted parameters
shown in Table 2, and are for mice
surviving the duration of the experi-
ment.
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1. For each dose group, choosem01 andm02, as described in
the final paragraph of Appendix A, using the data from the
current study instead of the historical controls.

2. Let the initial values forb1 and g1 be the least squares
estimates of the intercept and slope, respectively, for the simple
linear model withm01 (selected in step 1) as the dependent
variable and one half the log dose as the independent variable.

3. Let the initial values forb2 and g2 be the least squares
estimates of the intercept and slope, respectively, for the simple
linear model withm02 (selected in step 1) as the dependent
variable and the log dose as the independent variable.

In addition, we set the initial value for 1/s2 to 0.1.
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